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Abstract. Origami is the art of folding paper. In the con-
text of engineering, orimimetics is the application of fold-
ing to solve problems. There is a branch of origami called
“action origami” where origami models in their final-folded
state exhibit motion. This motion can be modelled with the
pseudo-rigid-body model since they are compliant mecha-
nisms. These mechanisms, when having a flat initial state
and motion emerging out of the fabrication plane, are classi-
fied as lamina emergent mechanisms (LEMs). In this paper,
four flat folding paper mechanisms are presented with their
corresponding kinematic and graph models. Principles from
graph theory are used to abstract the mechanisms to show
them as coupled, or inter-connected, mechanisms. It is antic-
ipated that this work lays a foundation for exploring methods
for LEM synthesis.
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1 Introduction

Origami is the art of folding paper where ori- means fold and
-kami means paper. The scope and complexity of origami
has exploded in the last twenty years creating many different
schools of thought (Demaine et al., 2010). Recently in the
fields of science, mathematics and engineering, origami has
been used to solve complex problems such as airbag fold-
ing, shock absorption (crash box), and deployable telescopic
lenses (Cromvik, 2007; Ma and You, 2010; Heller, 2003).
Origami design is governed by mathematical laws, which if
better understood, could be applied in engineering. Specifi-
cally, the authors believe that origami can advance synthesis
techniques for compliant mechanisms. This paper examines
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the potential that origami has to provide such solutions and
new tools for mechanism design.

Traditionally origami has been static and representational,
however, action origami focuses on origami models that have
some novel motion. Figure 1 shows two examples, where one
is a static origami structure and the other is an action origami
mechanism called a flasher hat; it is shown in its fabricated
and deployed forms. Another branch of origami, rigidly fold-
able origami, focuses on motion (Tachi, 2006; Balkcom and
Mason, 2008; Hull, 1994; Watanabe and Kawaguchi, 2006).
In this class of origami the creases often act as joints and the
faces act as links with bending stress only occurring at the
creases.

Fig. 1. Example of an origami structure (left) and flasher hat mech-
anism in its fabricated (middle) and deployed form (right).

The process of folding origami has been examined using
kinematic theory (Dai and Jones, 2002; Balkcom and Mason,
2008; Tachi, 2006; Buchner, 2003). This paper focuses on
the motion of a finished origami and not the states in between
flat and final states.

Since origami relies on the deflection of flexible materials
it is a compliant mechanism. The origami mechanisms ex-
amined herein are all flat folding in their final folded state,
and so they are part of subgroup of compliant mechanisms
called lamina emergent mechanisms (LEMs). Lamina emer-
gent mechanisms are compliant mechanisms made from pla-
nar materials (lamina) with motion that emerges out of the
fabrication plane.
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The connection between origami and mechanisms is also
seen by drawing upon principles from graph theory to de-
pict the origami mechanisms via simple, planar connected
graphs. The purpose of this is to show how the folds and
facets interact with each other in their motion. Graphs allow
for improved understanding of the interaction between mo-
tion and structure of origami, and may help in understanding
how to predict complex motion.

Origami’s rich history and research in design optimisa-
tion can provide an orimimetic perspective to LEM design
to develop products requiring complex motion from compact
mechanisms.

1.1 Objective

Orimimetic design refers to the application of the concepts
of folding to improve design. It can provide alternative ways
to achieve a particular range of motion; compliant mecha-
nisms have a similar aim. In addition, origami is achieved
from the manipulation of a planar material which motivates
its examination as a lamina emergent mechanism. By show-
ing the relation between origami and compliant mechanisms
it is anticipated that the literature for origami design can be
applied to compliant mechanism design, specifically in the
area of LEMs.

2 Nomenclature

It is helpful to establish terminology to facilitate discussion.
A few terms, and their use, are provided below.

2.1 Origami

Origami. Origami is defined as the art of folding paper, and
in the context of engineering, it is the use of folding to solve
mechanical problems (Demaine and O’Rourke, 2007).

Kirigami. Kirigami is defined as the art of folding and
cutting paper (Hart, 2007). An example of kirigami is shown
in Figure 2 with the side view showing how creases are made
such that the house pops out of the paper.

Hinge creases. In traditional origami hinge creases define
the boundaries between flaps. In the context of mechanisms
they are creases along which lies an interface of two planar
faces and it is the axis about which both facets rotate (De-
maine and O’Rourke, 2007).

Construction creases. Creases used to create references in
the construction of the mechanism, but are not directly used
to create motion, are referred to as construction creases. In
some cases, they coincide with hinge creases (Demaine and
O’Rourke, 2007).

Structural creases. Structural creases are used to define
the shape of flaps; they can be hinge creases as well. These
creases are not needed in most mechanisms and they are not
feasible for many materials. They may/can be substituted or
eliminated in various ways (Demaine and O’Rourke, 2007).

Fig. 2. A kirigami house made in cardstock.

Crease vs. fold. A fold is an action and a crease is the
product of that action.

2.2 Mechanisms

Compliant Mechanism. Mechanisms which transfer or trans-
form motion, force, or energy at least in part through the
deflection of flexible members are compliant mechanisms
(Howell, 2001).

Lamina Emergent Mechanism. Lamina emergent mecha-
nisms (LEMs) are a subset of compliant mechanisms made
from planar materials (lamina) with motion that emerges out
of the fabrication plane (Jacobsen, 2007). They are a subset
of compliant mechanisms, in that they use the deflection of
flexible members to achieve the desired motion. As a sub-
set of compliant mechanisms, LEMs can provide feasible,
repeatable solutions to advance the design and manufactur-
ing of products. The advantages of LEMs are: reducing the
number of parts, reducing cost, reducing weight, improving
recyclability, increasing precision, and eliminating assembly
(Jacobsen, 2007). The incorporation and use of LEMs of-
fer many potential advantages in the design of mechanical
products. These mechanisms can provide opportunities for
more cost-effective, compact, easy to assemble, and modular
products.

Orimimetic. Orimimetic means the ability to imitate folds.
In an engineering design context, it refers to the ability to use
the concept of folding to solve problems.

2.3 Principles From Graph Theory

Graph. A graph consists of points, called vertices, and con-
nections, called edges (Marcus, 2008).

Planar graph. A graph with no edges crossing is a planar
graph (Marcus, 2008).

Facet. The area enclosed by a planar graph is referred to
as a facet.

Degree. The degree of a vertex is the number of edges that
occur at that vertex (Marcus, 2008).
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Degree sequence. The degree sequence of a graph is the
degrees of each vertex listed in decreasing order (Marcus,
2008).

Regular graph, d-regular graph. A graph is considered
regular if all its vertices are of the same degree. It can be
referred to as a d-regular graph, where d us a non-negative
integer where each vertex has degree d. (Marcus, 2008).

3 Origami Background

These sections describe the relevant history and current ap-
plications of origami to solve problems.

3.1 Origami History

The current origami movement began in the early 20th cen-
tury, though historically origami has its beginning in several
countries dating back to the Muromachi period, from 1333-
1573 AD (Demaine and O’Rourke, 2007). Akira Yosihzawa
and his origami works have been largely credited for the cre-
ative explosion in origami in the last century (Demaine and
O’Rourke, 2007). Since the 1920’s, origami design has be-
come increasingly complex and varied. Initially origami was
used to create figures and animals. As the art has progressed,
the models have become increasingly complex, starting with
a few to a few dozen steps to a few hundred or even a thou-
sand steps. In the last twenty years new branches of origami
have begun to be explored by more than artists; a growing
number of mathematicians, educators, engineers and scien-
tists have gathered to discuss the applications of origami in
their respective fields (Demaine and O’Rourke, 2007).

Closely related to origami are other forms of paper en-
gineering, such as kirigami, pop-up paper mechanisms, and
origami architecture.

3.2 Origami Applications in Engineering and Science

Previous work has applied origami to map the transition be-
tween initial and final states, it has focused on studying the
folding process. An example is airbag folding designs which
unfold smoothly from their flat starting state to their final
volume (Cromvik, 2007). The Diffractive Optics Group at
Lawrence Livermore Laboratory is developing a telescope
having a lens with a 100 meter diameter, but that could be
collapsible enough to fit into a space vehicle having a 4 meter
diameter and 10 meter length. Lang used origami to identify
a design that would fit and maintain the integrity of the sur-
face when deployed into space (Heller, 2003; Wu and You,
2010; Wei and Dai, 2009). Origami has also been applied to
the crash box of a car to improve energy absorbtion in a low
speed collision (Ma and You, 2010). Miura explored meth-
ods of folding maps that could be unfolded with the simple
pull of a corner (Miura, 2002). In the 1980’s he invented the
Miura-ori pattern, which is used as a basis for folding solar

arrays (Miura and Natori, 1985). In 2005, Mahadevan pub-
lished findings that this same pattern exists in leaf folding,
wings, and flower petals (Mahadevan and Rica, 2005).

4 Origami Mechanisms

This paper considers origami mechanisms as opposed to
origami structures. The motion should exist after all folds
are completed.

4.1 Kinematic Modelling of Origami Mechanisms

Origami mechanisms are modelled with hinge creases as
joints and facets as links (Winder et al., 2009). Origami that
is rigid-foldable is a “piecewise linear origami that is contin-
uously transformable without the deformation of each facet”
(Tachi, 2010). Rigid origami is also defined as having re-
gions of the paper between crease lines that do not need to
bend or twist in the folding process (i.e. the facet could be re-
placed with sheet metal and hinge creases replace by hinges
and it would still fold up) (Hull, 1994; Tachi, 2006). Fig-
ure 3 shows an example of rigid origami by modelling the
links of the square twist, a common origami unit for tessel-
lations, with polypropylene sheet links, thus only allowing
bending at the folds.

Fig. 3. A square twist origami out of polypropylene sheet and paper.
The polypropylene shows that it behaves rigidly, where bending is
only allowed at the folds.

4.2 Origami and Compliant Mechanisms

Origami mechanisms are compliant mechanisms; their mo-
tion is a result of the deflection of the material. As a mate-
rial undergoes deformation, the resulting stored strain energy
gives rise to an internal spring force. Balkcom notes that “the
configuration of paper is determined by internal spring forces
as well as external forces and constraints” (Balkcom and Ma-
son, 2008). Thus, the origami can be viewed as a compliant
mechanism which can be modelled using the pseudo-rigid-
body model.

By focusing on origami in a fabricated state we only ex-
amine the folds that contribute to the mechanisms structure
and motion, not the folds that were used to construct it.
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4.2.1 Pseudo-Rigid-Body Model

The pseudo-rigid-body model (PRBM) uses rigid-body com-
ponents, rigid links and springs, that have equal force-
deflection characteristics to model the deflection of flexible
members (Howell, 2001). Figure 4 shows the double slit and
its corresponding PRBM.

Fig. 4. A common double slit kirigami modelled and its correspond-
ing PRBM.

4.3 Origami as a Lamina Emergent Mechanism

Because origami mechanisms are made from lamina mate-
rials it follows that they are LEMs. Traditionally, origami
designs are judged by their efficiency and accuracy in terms
of material usage and number of folds (Lang and Hull, 2005).
For a model of an animal, efficiency is often defined by the
ratio of the size of the final model to the initial sheet. This
measure of efficiency can be especially useful in an orim-
imetic approach to LEM design.

Some branches of origami that are of special interest to
LEMs are flat-folding origami, which is origami that folds
to a flat state, and tessellations or tilings, which could be
useful for LEM applications in arrays. The repetition of basic
folds in tessellations leads to the development of an origami
mechanism that expands and contracts thereby capturing the
motion that would be required for an array-type structure.

Table 1 lists how origami has been applied in engineering.
The potential for origami insights in LEM design can be seen
by mapping existing applications of origami to the six appli-
cation categories for LEMs suggested by Albrechtsen et al.
(Albrechtsen et al., 2010).

5 Graph Theory Approach

Principles from graph theory can be used as a tool to un-
derstand how origami functions as a mechanism (Dobrjan-
skyj and Freudenstein, 1967). Graphs model origami and
mechanisms on an abstract level and show their similarities.
The abstraction of origami mechanisms to connected planar
graphs demonstrates how the origami functions as a mech-
anism. Dai’s carton folding research applies graph theory
to show an equivalent mechanism (Dai and Jones, 2002).

Table 1. Origami Applications by LEM Technology Category

LEM Application Class Origami Corollaries

Disposable mechanisms Packaging

Novel Array mechanisms Space sails
Telescopes

Scalable mechanisms Origami at nano-level
Cellular origami

Surprising Motion mechanisms Pop-up books

Shock-absorbing mechanisms Crash box

Deployable mechanisms Airbags
Stents

Origami mechanisms can be reduced to graphs which show
how they behaves mechanically.

5.1 Modelling

Folds become line segments (edges) and links become nodes
(vertices) in the graph. From such graphs it can be seen that
origami mechanisms may be thought of as interconnected
linkages, with each loop representing a linkage system. It
is important to note that in graph theory the shape of an edge
or the position of the vertices does not matter since graphs
depict connections (Marcus, 2008).

The crease pattern can be related to the graph of the
origami mechanism in some cases where all creases are hinge
creases and the origami can be flattened via actuation. In
this case the graph and crease pattern are considered dual
graphs. Figure 5 shows the square twist with its crease pat-
tern and corresponding graph overlaid. However, for the gen-
eral case, the crease pattern may include structural and con-
struction creases which aid in the folding of the origami but
those creases do not contribute to the motion and therefore
are not considered in the origami’s corresponding graph.

Fig. 5. The crease pattern for the square twist is shown with its
corresponding graph overlaid in black. In the crease pattern the red
corresponds to mountain folds and blue to valley folds.

Any simple planar connected graph with four segments
connecting four vertices that is a 2-regular graph represents
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a four-bar mechanism. The graphs depict the degree of in-
terconnection for each linkage system, this is shown in how
each facet relates to its neighbouring facets. Each facet in a
graph represents a linkage having the same number of links
as nodes. For example, a facet (enclosed region) having four
vertices (links) on the boundaries separating four segments
(joints) is representative of a four-bar linkage.

6 Paper Mechanism Models

Four paper mechanisms are shown in Table 2 with their
corresponding kinematic and graphical representations. For
simplification, all four paper mechanisms are flat-folding
mechanisms and are rigid-foldable. The first mechanism is
a simple four-bar double-slit mechanism. The second is a
mechanism with a series of 45-degree folds along a spine
where links were cut from the same paper. Upon opening
about the centre fold axis, the links rotate about an axis de-
fined by the spine. The third is a series of square twists,
which derive their name from the twisting motion of the cen-
tral square when a corner is pulled to actuate the mechanism.
Last is an example tessellation of the water bomb base fold.

The kinematic representations for each mechanism exam-
ine a portion of the larger mechanism and its motion. When
the paper mechanisms have a flat initial state and they can
be represented with kinematics, by definition they can be re-
alized as a LEM. In addition, the graphs representing each
paper mechanism show more abstractly the mechanism and
how they are coupled. The graphs also indicate the type of
fold, where mountain folds are shown in red and valley folds
are in blue.

The four-bar double slit mechanism uses the PRBM to
show how each crease can be modelled as a joint with a
torsional spring. The four-bar double slit paper mechanism
is a simple four-bar. Its graph is a 2-regular graph. It has
three valley folds, and one mountain fold as indicated by the
colours of edges in the graph. Each link has only two joints
that define its motion.

For the 45-degree-fold twisting mechanism each centre
fold, along the spine of the mechanism, is a 45 degree fold.
The kinematic representation shows only four links along the
spine. The 45-degree-fold twisting mechanism is a chain of
four-bar mechanisms where those links that are not on the
ends are share two links between each neighbouring linkage
system, and each inside link is constrained by three joints
with one of those joints shared between each neighbouring
linkage system. Its graph has a degree sequence of (3,3,[20
more 3s],2,2,2,2).

The square twist mechanism is a series of coupled spher-
ical mechanisms which collapse onto one another. Figure 3
shows the basic square twist, and the kinematic representa-
tion shows one of the four-bar linkages seen at the corner
of the twisting square platform. It may be better to express
the square twist as inter-connected four-bar spherical mech-

anisms, which may be seen in the graph representation. The
square twist mechanism base graph is shown and has a de-
gree sequence of (4,[6 more 4s],3,3,3,3,2,2,[6 more 2s]). The
outer corner links each connect to only two joints. There are
two neighbouring links on each end that are connected to
three joints and are shared between two linkage systems. Of
the 7 nodes of degree four, 3 are shared between four linkage
systems and 4 are shared between three linkage systems.

Lastly, the kinematic representation for the water bomb
base tessellation is shown. As a graph the water bomb base
tessellation is a 3-regular graph. The water bomb base tes-
sellation contains six-bar linkage systems that are intercon-
nected. Each link is shared between three linkage systems
via three joints. This is also the basic tessellation used in
the origami stent design which allows for the mechanism to
compact radially as well as lengthwise (Kuribayashi et al.,
2006).

7 Conclusions

The ability to model origami and kirigami mechanisms with
kinematics introduces a portion of the origami literature into
the compliant mechanism field. It is anticipated that this will
improve the ability to synthisise LEMs. In addition, by ex-
amining the graphs of some paper mechanisms it is under-
stood that their motion is achieved because they are a sys-
tem of coupled, or interconnected, mechanisms. The au-
thors anticiplate that the abstraction to graph theory will pro-
vide direction for the development of synthesis techniques
for LEMs.
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Table 2. Table of Mechanisms

Paper Mechanism Kinematic Representation Graph

1. Four-Bar Double Slit

2. 45-degree-fold Twisting Mechanism

3. Square Twist

4. Water Bomb Base Tessellation
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