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a b s t r a c t

Sandwich structures with folded cores are regarded as a promising alternative to conventional honeycomb
sandwich structures in the aerospace industry. This paper presents a parametric study on the mechanical
properties of a variety of Miura-based folded core models virtually tested in quasi-static compression,
shear and bending using the finite element method. It is found that the folded core models with curved
fold lines exhibit the best mechanical performances in compression and shear while the multiple layered
models outperform the other folded core models in bending. Furthermore, the folded core models are
compared to a honeycomb core model with the same density and height. In this case, it is shown that the
honeycomb core has the best performance in compression while the folded cores have comparable or even
better performances in the shear and bending cases. The virtual test results reported in this paper can
provide researchers with a general guideline to design the most suitable folded core structure for certain
applications.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Composite sandwich structures, typically consisting of two thin
and stiff faces separated by a thick lightweight cellular core, have
many successful applications in the aerospace industry where weight-
saving is the paramount design goal. In this context, honeycomb cores
made of aluminum or Nomex paper are the most commonly used
core type today due to their excellent weight-specific mechanical
properties. However, honeycomb cores are known to suffer from an
undesirable moisture accumulation problem whereby the condensed
moisture is trapped inside the sealed hexagon cells leading to
deterioration of the mechanical performance over time [1].

Folded cores, made by folding sheet material into a three-dimen-
sional structure according to the principle of origami – an ancient art
of paper folding – do not have the moisture accumulation problem
because of the existence of open channels in such structures. More-
over, they allow for tailored mechanical properties with a wide
range of possible configurations. Therefore, they emerge as a promis-
ing alternative to conventional honeycomb cores and have seen a
surge in research interest from the aerospace industry in recent years.
For example, in the transnational project CELPACT, the fabrication cost
and impact performance of three different advanced cellular core

concepts, i.e. folded core, selected laser melted lattice core, and closed
cell core, were evaluated and compared [2]. Besides, the aircraft
manufacturer Airbus presented a sandwich fuselage concept, VeSCo,
which incorporates folded cores as a sandwich core material [3] and
has made a 4.5 m2 test assembly consisting of approximately 165,000
creases [4].

While specimen manufacturing and mechanical testing remain
routine procedures, numerical analysis based on the finite ele-
ment (FE) method, as an established time- and cost-efficient tool,
has been widely adopted in the development of new composite
structures. Besides, FE simulations can provide analysis details such
as the cross-sectional stress/strain data that are usually difficult to
obtain experimentally. As a result, a number of numerical studies
of folded-core sandwich structures, such as virtual in- and out-of-
plane quasi-static compression and shear tests [5–9], low- and high-
velocity impact simulations [10–12], residual bending strength
simulations after impact [13] and macro- and multi-scale modeling
[7,11], are available in the literature. However, most folded cores
used in research work are made of two simple Miura-based unit cell
geometries with zigzag and chevron shapes [14]. So far, the authors
are not aware of any research on computational or experimental
studies of folded core structures beyond these two simple cases.
Consequently, the mechanical properties of other folded configura-
tions remain unexplored.

This paper presents a parametric study on folded cores with
different geometric parameters based on the standard Miura folding
pattern [15] and its variation forms subject to out-of-plane
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compression, in-plane shear and bending using the finite element
method. To facilitate the parametric modeling, a new origami
geometric design approach, known as the vertex method [16], is
used to generate the various folded core models in this study.
Furthermore, the weight-specific mechanical properties of the
folded core models were compared to those of a honeycomb model
with the same density.

The layout of the paper is arranged as follows. First, the mechanical
behaviors of eight folded coremodels with the standardMiura origami
folding pattern are simulated and compared. Second, the eight folded
core models with curved fold lines are virtually tested. Third, a further
two folded core models with multiple layers are considered. Fourth,
the mechanical performances of the folded core models are compared
with those of a honeycomb core model. Finally, a brief discussion
concludes the paper.

2. Standard Miura folded cores

2.1. Geometric models

Making use of a set of geometric parameters to define the folded
configuration of a unit cell is a commonly employed modeling

Fig. 1. The input points in the x–z and y–z planes used to generate the unit cell models UM11–UM18.

Fig. 2. Unit cell models UM11–UM18.

Fig. 3. Definition of the base area Su and the core height Hc of a unit cell.

Table 1
The geometric properties of models M11–M18.

Model α [rad] hx [mm] β [rad] hy [mm] Hc [mm] Su [mm2] tm [mm]

M11 π=4 5 π=4 10 10 200 0.25
M12 π=4 10 π=4 10 10 400 0.25
M13 π=3 5 π=4 10 10 115.47 0.1768
M14 π=3 10 π=4 10 10 230.94 0.1768
M15 π=4 5 π=3 10 10 115.47 0.1768
M16 π=4 10 π=3 10 10 230.94 0.1768
M17 π=3 5 π=3 10 10 66.67 0.125
M18 π=3 10 π=3 10 10 133.33 0.125

Table 2
The parameters of the material model.

Material ρm [kg/m3] E [GPa] sy [GPa] suts [GPa] v

5052-O Al 2690 69.6 65.5 193 0.33

X. Zhou et al. / Thin-Walled Structures 82 (2014) 296–310 297



technique of folded cores in the literature [4]. However, this
approach lacks flexibility in that a new set of geometric parameters
and their relationships must be established when a different type of
folded core is studied. In this paper, an alternative modeling
approach, known as the vertex method for designing developable
origami structures, is used to generate the geometric models of
folded cores. In this method, m input points in the x–z plane,
denoted by their position vectors Vx

i ¼ ½xxi 0 zxi �T, i¼ 1; 2; …;m,
and nþ2 input points in the y–z plane, denoted by their position

vectors Vy
j ¼ ½0 yyj zyj �T, j¼ 0; 1; …;nþ1, are first specified in

a Cartesian coordinate system, and then m� n vertices Vi;j of
the target folded core geometric model are obtained using the
following equation:

Vi;j ¼
xi;j
yi;j
zi;j

2
64

3
75¼ Vy

j þ½Aj�Vx
i ; i¼ 1; 2;…;m; j¼ 1;2;…;n; ð1Þ

Fig. 4. Folded core models M11–M18 each consisting of four unit cells in a 2�2 array.
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where ½Aj� is a 3� 3 matrix given by

½Aj� ¼

1 0 0
0 0 ð�1Þj cos θj� 1 þ cos θj

sin ðθj� 1 �θjÞ

0 0 ð�1Þj sin θj� 1 þ sin θj

sin ðθj� 1 �θjÞ

2
6664

3
7775; ð2Þ

where the angular variable θj is determined by

sin θj ¼
iz U ðVy

jþ1�Vy
j Þ

‖Vy
jþ1�Vy

j ‖
; ð3Þ

cos θj ¼
iy U ðVy

jþ1�Vy
j Þ

‖Vy
jþ1�Vy

j ‖
ð4Þ

where iy ¼ ½0 1 0�T and iz ¼ ½0 0 1�T are the unit vectors
of the y- and z-axes, respectively, and u denotes the norm of a
vector u.

Fig. 1 shows the input points in the x–z and y–z planes used to
generate the models in this section, which are defined by four
parameters, i.e. α, hx, β and hy. By fixing hy to 10 mm and choosing
different combinations of values for the other three parameters,
eight unit cell models known as standard Miura origami structures
are obtained, as shown in Fig. 2. The core density ρc can be
obtained by

ρc ¼
tmSm
Vu

ρm; ð5Þ

where tm, Sm and ρm are, respectively, the thickness, total area and
material density of the sheet from which a unit cell of the core is
folded and Vu is the spatial volume of the unit cell, defined by

Vu ¼ SuHc; ð6Þ
where Su is the base area of the unit cell and Hc is the core height,
as illustrated in Fig. 3. Since the weight-specific mechanical
properties of the folded cores are concerned, a unified core density
equal to 0:05ρm is used for all models studied in this paper.
According to Eq. (5), the thickness of the sheet material is given by

tm ¼ 0:05
Vu

Sm
: ð7Þ

Table 1 summarizes the geometric properties of the eight unit
cell models considered in this section. It is found that tm is not
affected by hx given that the other input parameters are fixed. The
larger the hx, the larger the amplitude of the flatwise zigzag fold
lines. With the increase in α or β, tm becomes smaller whereas the
folded core becomes denser in the x- or y-direction.

2.2. FE models

Finite element analysis was performed in the FE solver ABA-
QUS/Explicit (SIMULIA Inc., USA) due to its good capability to cope
with large nonlinear deformations, post-buckling behaviors and
complex contact conditions. Because the main purpose of this
paper is to study the structural influence on the mechanical
properties of the folded cores, both the faces and the core are
assumed to be made of 5052-O aluminum alloy and a bilinear
isotropic plastic material model [17] is employed for simplicity. For
quasi-static loading cases, the strain rate effect is not considered.
The detailed material parameters are summarized in Table 2.

S4R, the four-node quadrilateral shell element with reduced
integration and hourglass control, is the element of choice in the
simulation. With this particular element type, the mesh density
has a strong influence on the accuracy of the simulation results.
Although a coarser mesh reduces the computational time, it is
not able to accurately represent the post-buckling behavior of the
facets. Therefore, convergence testing of different element sizes

ranging from 0.15 mm to 0.4 mm was firstly performed for all
eight unit cell models in Fig. 2 subject to compressive loads in the
thickness direction. The results converged for element sizes below
0.2 mm. Therefore, the 0.2 mm element size is used for all
subsequent analyses unless otherwise specified. In the virtual
tests, each folded core model consists of four unit cells in a 2�2
array, as shown in Fig. 4. The numbers of elements in the eight
folded core models used in the virtual tests range from 29696 for
M17 to 98832 for M12.

Three types of virtual tests, i.e. compression, shear and bending,
were considered. In the virtual compression test, two rigid plates
RP1 and RP2, parallel to the x–y plane, were attached to two ends of
the model in the thickness direction using the tie constraint, as
shown in Fig. 5(a). The general contact algorithm was employed to
model the self-contact of the folded core and the surface-to-surface
contact between the core and each rigid plate. Rigid plate RP1 was
fixed both translationally and rotationally, and rigid plate RP2 was
displaced by half of the thickness, i.e. 5 mm, toward RP1, resulting in
a maximum loaded compressive strain of 50%. The loading rate was
chosen as 500 mm/s to ensure quasi-static results while allowing
the simulation to complete within a reasonable computational time.
In the virtual shear test, the same model as that in the compression
test was used, as shown in Fig. 5(b–c). Rigid plate RP1 was still
completely fixed. In two load cases, rigid plate RP2 was displaced
5-mm in the y- and x-directions with its translational degree of

Fig. 5. (a) Virtual compression test; (b) virtual shear test in the y–z plane; and
(c) virtual shear test in the x–z plane.
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freedom in the thickness direction unconstrained, resulting in a
maximum loaded shear strain of 50%. The loading rate was still set
as 500 mm/s to ensure the simulation was conducted quasi-
statically. In the virtual bending test, the two rigid plates used in
the previous tests were replaced by two 1-mm thick faces made of
the same material as the core to form a sandwich structure, as
shown in Fig. 6. The faces are meshed with S4R elements of the
same element size for the core. Two load cases were performed
separately. In the first load case, two rigid plates RP3 and RP4

were attached to two y-directional ends of the model, as shown in
Fig. 6(a). The two rigid plates were rotated about the x-axis
by 0:01ly and �0:01ly to bend the sandwich structure in the
x-direction to a resultant curvature of 0.02. In the second load case,
two rigid plates RP5 and RP6 were attached to the x-directional
ends of the model, as shown in Fig. 6(b). Then, they were rotated
about the y-axis by 0:01lx and �0:01lx to bend the sandwich
structure in the y-direction to a resultant curvature of 0.02. In both
bending load cases, the loading rate was chosen as 100 rad/s to
ensure quasi-static results.

2.3. Results

The effective compressive stress–strain curves of models M11–
M18 in the virtual compression test are plotted in Fig. 7 where a
logarithmic scale is used for the strain axis to better illustrate the
regions of small strains. According to the curves, the behaviors
of the folded cores under compression are characterized by three

Fig. 6. Virtual bending test (a) in the x-direction and (b) in the y-direction.

Fig. 7. The effective compressive stress versus strain curves of models M11–M18 in
the virtual compression test.

Table 3
The compressive stiffness Ec and shear stiffnesses Es1 and Es2 of models M11–M18.

Model Ec [MPa] Es1 [MPa] Es2 [MPa]

M11 1202 874 337
M12 1562 879 470
M13 1252 884 166
M14 1806 911 253
M15 2268 735 466
M16 2519 784 554
M17 2308 762 229
M18 2667 864 285

X. Zhou et al. / Thin-Walled Structures 82 (2014) 296–310300



distinct stages, i.e. pre-buckling (stage I), folding (stage II) and
densification (stage III). In the first stage, the folded cores behave
linear-elastically up to an average strain of 0.06% where the yield
of the material begins to propagate. The compressive stiffnesses Ec
of the eight models in the linear-elastic range are listed in the
second column of Table 3. It is noted that Ec increases with the
increase in α, hx or β and is more sensitive to the change of β than
that of α. In the second stage, buckling followed by folding of the
facets occurs, which is accompanied by softening of the folded
cores in the thickness direction. Since the facets do not buckle and
fold at the same time, two sub-stages can be identified. Specifi-
cally, the facets in the outer two x-directional rows buckle and fold
at first, as shown in Fig. 8(a), followed by buckling and folding
of the facets in the middle two x-directional rows, as shown in
Fig. 8(b). The third stage features densification of the folded cores
where the facets come into contact with each other and/or with
the rigid plates, as shown in Fig. 8(c), resulting in an increase in
the compressive stress. Fig. 9 compares the absorbed compressive
energies per area, i.e. the surface under the stress–strain curve, of
the eight models. It is noted that models with smaller α and hx
absorb more compressive energy than those with larger α and hx,
and the energy absorption capacity is less sensitive to β.

Fig. 10(a and b) shows the effective shear stress–strain curves of
models M11–M18 in the virtual shear tests in the y–z and x–z
planes, respectively. Similar to the compression loading case, three
stages, i.e. pre-buckling, folding and densification, are observed in
both the shear loading cases while the folding stage can be further
divided into sub-stage 1, buckling and folding of the facets in
the outer two y-directional rows, and sub-stage 2, buckling and
folding of the facets in the middle two y-directional rows.
The representative deformed shapes of model M11 in folding
sub-stage 1 (at 2% strain), folding sub-stage 2 (at 20% strain) and
the densification stage (at 50% strain) during shear loading in the
y–z plane are shown as an example in Fig. 11(a–c), respectively.
The shear stiffnesses in the y–z plane Es1 and in the x–z plane Es2 of

models M11–M18 in the linear-elastic range are listed in the third
and fourth columns of Table 3, respectively. In the y–z plane, the
shear stiffness Es1 increases with the increase in α or hx but
decreases with the increase in β. In the x–z plane, the shear
stiffness Es2 increases with the increase in hx or β but decreases
with the increase in α. Fig. 12(a and b) compares the absorbed
shear energies per area in the two shear loading cases. It is
consistently observed in both cases that models with smaller α,
hx or β absorb more shear energy than models with larger α, hx or
β. For the y–z plane loading case, β has the greatest influence on
the energy absorption capacity whereas for the x–z plane loading
case, α plays a decisive role in the energy absorption capacity.

2% strain 20% strain 50% strain

top view top view top view 

side view side view sideview

section A-A section A-A section A-A 

section B-B section B-B section B-B

Fig. 8. The deformed shapes of model M11 in the virtual compression test at (a) 2% strain; (b) 20% strain; and (c) 50% strain.

Fig. 9. The absorbed compressive energy per area versus strain curves of models
M11–M18 in the virtual compression test.
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Fig. 13(a and b) shows the bending moments in the x-direction
normalized by lx and in the y-direction normalized by ly, respec-
tively, of models M11–M18 plotted against the curvature. In both

the x-directional and the y-directional bending cases, the bending
moment first increases linearly with the curvature until the
yield of the material occurs, then continues to increase with a
reduced slope up to buckling of the sandwich structure and
finally decreases sharply afterward. The pre-buckling (a) and
post-buckling (b and c) deformed shapes of model M11 in the
x- and y-directional bending cases are shown in Fig. 14(a and b),
respectively. It is noted that both cases involve buckling of both
the folded core and the upper face. The bending stiffnesses in the
linear-elastic range and the bending moments and curvatures at
the buckling point of models M11–M18 are listed in Table 4. For
the x-directional bending case, the bending stiffness EIx increases
with the increase in hx or β. Both the critical bending moment Mcr

x
and curvature kcrx at the buckling point increase with the increase
in α or β. For the y-directional bending case, the bending stiffness
EIy decreases with the increase in α, hx or β. While the critical
bending moment Mcr

y and curvature kcry at the buckling point also
decrease with the increase in hx, they increase with the increase in
α or β on the contrary.

3. Folded cores with curved fold lines

3.1. Model description

In this section, the influence of curved fold lines on the
mechanical properties of the folded cores is investigated. Accord-
ing to the discussion in Section 2.3, model M11 has overall the best
energy absorption performances under compressive and shear
loads. Therefore, the folded core structures with curved fold lines
that are modified from model M11 are considered.

The x–z plane inputs used to generate the unit cell models
in this section are shown in Fig. 15 where the input points
Vx

i ; i¼ 1;2;… are densely located on the solid curved line con-
sisting of four sub-segments, each of which is a part of a circle and
tangential to the solid-dotted lines at intersection points. The y–z
plane inputs are the same as those of model UM11 and are hence

Fig. 10. The effective shear stress versus strain curves of models M11–M18 in the virtual
shear tests (a) in the y–z plane and (b) in the x–z plane.

Fig. 11. The deformed shapes of model M11 in the virtual shear test in the y–z plane at (a) 2% strain; (b) 20% strain; and (c) 50% strain.
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not shown here. It is noted that the unit cell geometry can be
totally determined by a single parameter γ. When γ is equal to
zero, model UM11 is gained. By varying γ from π=2 to �π=2, eight
unit cell models are generated. The larger the absolute value of γ,
the more curved the fold line. The geometric properties of these
models are listed in Table 5. It is noted that the wall thickness tm
increases with the decrease in the absolute value of γ, and models
with the same absolute value of γ have the same tm.

The eight folded core models M21–M28 used in the virtual
tests in this section are shown in Fig. 16, each of which consists of
four unit cells in a 2�2 array. An average element size of 0.2 mm
is used to mesh the models according to the mesh convergence
tests. The numbers of elements in the eight models range
from 49984 to 54528. The same virtual tests as described in
the previous section, i.e. compression in the z-direction up to
50% compressive strain, shear in the y–z and x–z planes up to
50% shear strain and bending in the x- and y-directions up to a
resultant curvature of 0.02 mm�1, were performed.

3.2. Results

For the virtual compression test, Fig. 17 illustrates the effective
compressive stress versus strain curves of models M21–M28 and

model M11 and the corresponding absorbed energy versus strain
curves are shown in Fig. 18. The compressive stiffness Ec and ultimate
strength scr

c of the nine models are listed in the second and third
columns of Table 6, respectively. It is noted that Ec increases with
the increase in γ while scr

c increases with the absolute value of γ.
Models with positive γ show better energy absorption performances in
compression than models with negative γ. All models with curved fold
lines exhibit improved compressive performances than M11.

The effective shear stress–strain curves and the corresponding
absorbed shear energy–strain curves of models M21–M28 and
model M11 in the y–z plane are shown in Figs. 19 and 20(a),
respectively. The shear stiffness Es1 and ultimate strength scr

s1 in
the y–z plane of the nine models are listed in the fourth and fifth
columns of Table 6, respectively. It is noted that Es1 values of the
nine models are basically the same, all within 0.8% deviation of
that of M11. scr

s1 increases with the increase in the absolute value
of γ. Models with positive γ in general have better shear energy
absorption performances in the y–z plane than models with
negative γ. Again, all models with curved fold lines absorb more
shear energy in the y–z plane than M11.

Fig. 12. The absorbed shear energy per area versus strain curves of models
M11–M18 in the virtual shear tests (a) in the y–z plane and (b) in the x–z plane.

Fig. 13. (a) The bending moment normalized by lx versus curvature curves of
models M11–M18 in the virtual bending test in the x-direction; (b) the bending
moment normalized by ly versus curvature curves of models M11–M18 in the
virtual bending test in the y-direction.
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The x–z plane counterparts of Figs. 19 and 20(a) are drawn in
Figs. 19 and 20(b), respectively, and the shear stiffness Es2 and ultimate
strength scr

s2 in the x–z plane of the nine models are listed in the last

two columns of Table 6. In this case, however, the shear stiffness Es2
decreases with the increase in the absolute value of γ. While M11 has
the highest stress–strain curve before the ultimate shear strength
scr
s2 is reached, models M21–M23 and M26–M28 outperform M11

afterward. In general, models with negative γ exhibit better shear
performance in the x–z plane than models with positive γ.

For the virtual bending tests, the bending moment per lx versus
curvature curves in the x- and y-directions of models M21–M28
and model M11 is plotted in Fig. 21(a and b), respectively. Their
bending stiffness EIx or EIy and maximum bending moment Mcr

x or
Mcr

y in the x- and y-directions are listed in Table 7. It is noted that
for the x-directional bending case, both EIx and Mcr

x increase as γ
increases while in the y-directional case, the maximum bending
moment Mcr

y increases with the increase in γ and the bending
stiffness EIy values of the nine models are literally the same.

4. Multiple layered folded cores

4.1. Model description

In this section, two folded core models with multiple layers of
materials M31 and M32 are considered. Model M31 consists of two
identical layers where the fold lines on the bottom side of the upper
layer and those on the top side of the lower layer are aligned and
merged, as shown in Fig. 22(a). Each layer contains eight unit cells in
a 2�4 array, each of which is scaled from the unit cell model of M21
by a scaling factor of 50%. The wall thicknesses of the upper and
bottom layers are the same. Model M32 is a three-layered config-
uration with an additional flat sheet as the middle layer added
between the upper and lower layers of model M31, as shown in
Fig. 22(b), where the wall thicknesses of the upper, middle and

Fig. 14. The deformed shapes of model M11 in the virtual bending tests (a) in the x-direction and (b) in the y-direction.

Table 4
The bending stiffness EIx , maximum bending moment Mcr

x and buckling curvature kcrx in the x-direction and the bending stiffness EIy ,
maximum bending moment Mcr

y and buckling curvature kcry in the y-direction of models M11–M18.

Model EIx [kN mm2/mm] Mcr
x [N mm/mm] kcrx [mm�1] EIy [kN mm2/mm] Mcr

y [N mm/mm] kcry [mm�1]

M11 3575 894 0.0023 3757 1378 0.0063
M12 3628 1263 0.0053 3664 1236 0.0053
M13 3583 914 0.0025 3816 1691 0.0074
M14 3636 1518 0.0071 3740 1399 0.0063
M15 3588 1599 0.0078 3676 1767 0.0096
M16 3655 1508 0.0067 3608 1358 0.0063
M17 3583 1690 0.0085 3750 1907 0.0096
M18 3636 1544 0.0074 3664 1475 0.0067

Fig. 15. The x–z plane inputs used to generate the unit cell models UM21–UM28.

Table 5
The geometric properties of models M21–M28 where α¼ π=4, hx ¼ 5 mm , β¼ π=4
and hy ¼ 10 mm.

Model γ [rad] Hc [mm] Su [mm2] tm [mm]

M21 π=4 10 200 0.2251
M22 arctanð3=4Þ 10 200 0.2331
M23 arctanð1=2Þ 10 200 0.2411
M24 arctanð1=4Þ 10 200 0.2475
M25 �arctanð1=4Þ 10 200 0.2475
M26 �arctanð1=2Þ 10 200 0.2411
M27 �arctanð3=4Þ 10 200 0.2331
M28 �π=4 10 200 0.2251
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lower layers are the same. The geometric properties of models M31
and M32 are summarized in Table 8. Both models are meshed with
S4R elements with an average size of 0.2 mm, resulting in 53760
elements for model M31 and 64939 for model M32.

4.2. Results

The compressive stress–strain curves of models M11, M21, M31
and M32 are shown by black dotted, black dash-dotted, blue solid
and blue dashed lines, respectively, in Fig. 23. Incidentally, the same

line types are assigned to models M11, M21, M31 and M32 in all
subsequent figures. The shear stress–strain curves in the y–z and x–z
planes are shown in Fig. 24(a and b), respectively. The bending
moment per lx or ly versus curvature curves in the x- and y-directions
is plotted in Fig. 25(a and b), respectively.

It is noted that the multiple layered models M31 and M32 have
lower stress–strain curves than model M21 in compression and shear
but they still outperform model M11 in compression and shear in
the y–z plane soon after initial buckling. In terms of bending, the
maximum bending moments of models M31 and M32 are much

Fig. 16. Folded core models M21–M28 each consisting of four unit cells in a 2�2 array.
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higher than those of model M21 in both the x- and y-directional
bending cases. Model M31 consistently outperforms model M32 in all
five loading cases.

5. Comparison with honeycomb core

In this section, the mechanical performances of the folded
cores are compared to a honeycomb core with the same density,
i.e. 0:05ρm, and the same height, i.e. 10 mm. Fig. 26(a) shows the
unit cell geometries of the honeycomb model whose hexagon cell
size is 2.5 mm, leading to a wall thickness of 0.0812 mm. The
virtually tested honeycomb core model MHC consists of four unit
cells in a 2�2 array, as shown in Fig. 26(b), and is meshed with
the S4R elements with an average size of 0.08 mm according to the
mesh convergence study. The total number of elements in the
model equals 93600.

The compressive stress–strain curve of the honeycomb model
MHC is shown by the red solid line in Fig. 23. The shear stress–
strain curves in the y–z and x–z planes are drawn as the red solid
lines in Fig. 24(a and b), respectively. The bending moment per
lx or ly versus curvature curves in the x- and y-directions is
illustrated by the red solid lines in Fig. 25(a and b), respectively.

When compared to the folded core models M21 and M31, the
honeycomb model outperforms the folded core models in the
compression and bending in the x-direction cases while the folded

Fig. 17. The effective compressive stress versus strain curves of models M21–M28
and model M11 in the virtual compression test.

Fig. 18. The absorbed compressive energy per area versus strain curves of models
M21–M28 and model M11 in the virtual compression test.

Table 6
The compressive stiffness Ec and strength scr

c , shear stiffnesses Es1 and Es2 and
strengths scr

s1 and scr
s2 of models M21–M28.

Model Ec [MPa] scr
c [MPa] Es1 [MPa] scr

s1 [MPa] Es2 [MPa] scr
s2 [MPa]

M21 1214 3.517 881 4.314 241 1.973
M22 1201 3.288 880 3.916 259 2.034
M23 1185 2.831 878 2.939 284 2.001
M24 1169 2.220 876 2.297 314 1.842
M11 1153 1.916 874 2.186 336 1.974
M25 1115 2.070 873 2.549 323 1.961
M26 1079 2.405 873 2.944 301 2.081
M27 1053 2.798 874 3.359 282 2.086
M28 1034 3.157 876 3.917 267 2.086

Fig. 19. The effective shear stress versus strain curves of models M21–M28 and
model M11 in the virtual shear tests (a) in the y–z plane and (b) in the x–z plane.
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core models have comparable or even better performances than
the honeycomb core for the rest of the cases.

6. Discussions and conclusions

Three types of folded cores namely (1) standard Miura, (2) with
curved fold lines and (3) multiple layered with the same density
and height are virtually tested under five loading cases, i.e. out-of-
plane compression, shear in the y–z and x–z planes, and bending
in the x- and y-directions. The Vertex Method for designing three-
dimensional origami structures is adopted to parameterize the
geometric models of the folded cores.

For the standard Miura folded cores, the following conclusions
can be reached: (a) the sparser models (corresponding to smaller
α and β) with smaller amplitude of the flatwise zigzag fold lines
(corresponding to smaller hx) exhibit better post-buckling and
energy absorption performances in compression and shear where
α plays the decisive role in the energy absorption capacity in the
x–z plane shear case and the energy absorption capacity in the y–z
plane shear case is mainly determined by β; (b) the denser models
with larger amplitude of the flatwise zigzag fold lines have higher

compressive stiffness; (c) the shear stiffness in the y–z plane
increases with the increases in α and hx but with the decrease in β
whereas the shear stiffness in the x–z plane increases with
the increases in β and hx but with the decrease in α; (d) the
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Fig. 20. The absorbed shear energy per area versus strain curves of models
M21–M28 and model M11 in the virtual shear tests (a) in the y–z plane and
(b) in the x–z plane.

Fig. 21. (a) The bending moment normalized by lx versus curvature curves of
models M21–M28 and model M11 in the virtual bending test in the x-direction;
(b) the bending moment normalized by ly versus curvature curves of models
M21–M28 and model M11 in the virtual bending test in the y-direction.

Table 7
The bending stiffness EIx , maximum bending moment Mcr

x and buckling curvature
kcrx in the x-direction and the bending stiffness EIy , maximum bending moment Mcr

y

and buckling curvature kcry in the y-direction of models M21–M28.

Model EIx
[kN mm2/mm]

Mcr
x

[N mm/mm]
EIy
[kN mm2/mm]

Mcr
y

[N mm/mm]

M21 3597 913 3762 1427
M22 3596 905 3761 1416
M23 3595 900 3759 1404
M24 3594 898 3760 1391
M11 3586 894 3763 1380
M25 3585 881 3763 1368
M26 3581 868 3762 1354
M27 3579 854 3762 1343
M28 3579 851 3763 1339
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denser the model in the y-direction (corresponding to larger β),
the higher the y-directional bending stiffness and maximum
bending moment; and (e) the denser the model in the x-direction
(corresponding to larger α), the higher the x-directional bending
stiffness and maximum bending moment.

Folded cores with both positively (i.e. positive γ) and negatively
(i.e. negative γ) curved fold lines show better mechanical perfor-
mances than the corresponding standard Miura folded core in
compression and shear in the y–z plane whereas the folded cores
with positively curved fold lines outperform those with negatively
curved fold lines. In the x–z plane shear loading case, although the
shear stiffnesses of the folded cores with curved fold lines are
lower than those of the standard Miura folded cores, the stresses
and absorbed energies of the folded cores with curved fold
lines with a larger absolute value of γ exceed those of the
standard Miura folded cores in the post-buckling range. In both
bending cases, only the folded cores with positively curved
fold lines show better performances than the standard Miura
folded cores.

The mechanical performances of the two-layered and three-
layered folded cores are poorer than those of the single-layered
model with curved folded lines in compressive and shear whereas
the multiple layered models show apparent improvement in the
bending cases.

Fig. 22. Folded core models M31 and M32 that consist of two and three layers, respectively.

Table 8
The geometric properties of models M31–M32 where α¼ π=4, hx ¼ 2:5 mm ,
β¼ π=4 and hy ¼ 5 mm.

Model Number of layers Hc [mm] Su [mm2] tm [mm]

M31 2 10 50 0.11254
M32 3 10 50 0.09186

Fig. 23. The effective compressive stress versus strain curves of models M31, M32,
M21, M11 and HMC in the virtual compression test. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 24. The effective shear stress versus strain curves of models M31, M32, M21,
M11 and HMC in the virtual shear tests (a) in the y–z plane and (b) in the x–z plane.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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When compared with the honeycomb core with the same
density and height, the folded cores show comparable or even
better mechanical properties in shear and bending cases but
relatively lower performance in compression.

The virtual tests reported in this paper provide an insight into
the mechanical properties of various Miura-based folded cores.
However, it should be noted that there are several limitations.
First, the number of unit cells contained in the simulated folded
core models is small, i.e. 4 or 8 due to computational time
consideration. In reality, a folded core usually contains a large
number of unit cells. Second, no imperfections are introduced into
the numerical models while in reality there are always imperfec-
tions introduced from the manufacturing process. Third, the
material model considered is a highly simplified one. Fourth, the
bonds between the core and the faces and between different
layers of the multiple layered models are considered to be perfect
while in reality failure of the bond may occur. Nevertheless,
the virtual test results can still serve as a useful guideline for
researchers and/or engineers to select a suitable folded core design
for certain applications. In our ongoing work, virtual tests of
various Miura-based folded cores subject to dynamic loads includ-
ing low and high impacts are considered. The results will be
reported in the subsequent paper.
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